
NAG Fortran Library Routine Document

D02PVF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02PVF is a setup routine which must be called prior to the first call of either of the integration routines
D02PCF and D02PDF.

2 Specification

SUBROUTINE D02PVF (NEQ, TSTART, YSTART, TEND, TOL, THRES, METHOD, TASK,
1 ERRASS, HSTART, WORK, LENWRK, IFAIL)

INTEGER NEQ, METHOD, LENWRK, IFAIL
double precision TSTART, YSTART(NEQ), TEND, TOL, THRES(NEQ), HSTART,

1 WORK(LENWRK)
LOGICAL ERRASS
CHARACTER*1 TASK

3 Description

D02PVF and its associated routines (D02PCF, D02PDF, D02PWF, D02PXF, D02PYF, D02PZF) solve the
initial value problem for a first-order system of ordinary differential equations. The routines, based on
Runge–Kutta methods and derived from RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0

where y is the vector of n solution components and t is the independent variable.

The integration proceeds by steps from the initial point t0 towards the final point tf . An approximate
solution y is computed at each step. For each component yi, for i ¼ 1; 2; . . . ; n, the error made in the step,
i.e., the local error, is estimated. The step size is chosen automatically so that the integration will proceed
efficiently while keeping this local error estimate smaller than a tolerance that you specify by means of
parameters TOL and THRES.

D02PCF can be used to solve the ‘usual task’, namely integrating the system of differential equations to
obtain answers at points you specify. D02PDF is used for all more ‘complicated tasks’.

You should consider carefully how you want the local error to be controlled. Essentially the code uses
relative local error control, with TOL being the desired relative accuracy. For reliable computation, the
code must work with approximate solutions that have some correct digits, so there is an upper bound on
the value you can specify for TOL. It is impossible to compute a numerical solution that is more accurate
than the correctly rounded value of the true solution, so you are not allowed to specify TOL too small for
the precision you are using. The magnitude of the local error in yi on any step will not be greater than
TOL�max �i;THRESðiÞð Þ where �i is an average magnitude of yi over the step. If THRESðiÞ is smaller
than the current value of �i, this is a relative error test and TOL indicates how many significant digits you
want in yi. If THRESðiÞ is larger than the current value of �i, this is an absolute error test with tolerance
TOL� THRESðiÞ. Relative error control is the recommended mode of operation, but pure relative error
control, THRESðiÞ ¼ 0:0, is not permitted. See Section 8 for further information about error control.

D02PCF and D02PDF control local error rather than the true (global) error, the difference between the
numerical and true solution. Control of the local error controls the true error indirectly. Roughly speaking,
the code produces a solution that satisfies the differential equation with a discrepancy bounded in
magnitude by the error tolerance. What this implies about how close the numerical solution is to the true
solution depends on the stability of the problem. Most practical problems are at least moderately stable,
and the true error is then comparable to the error tolerance. To judge the accuracy of the numerical
solution, you could reduce TOL substantially, e.g., use 0:1� TOL, and solve the problem again. This will

D02 – Ordinary Differential Equations D02PVF

[NP3657/21] D02PVF.1

usually result in a rather more accurate solution, and the true error of the first integration can be estimated
by comparison. Alternatively, a global error assessment can be computed automatically using the
parameter ERRASS. Because indirect control of the true error by controlling the local error is generally
satisfactory and because both ways of assessing true errors cost twice, or more, the cost of the integration
itself, such assessments are used mostly for spot checks, selecting appropriate tolerances for local error
control, and exploratory computations.

D02PCF and D02PDF each implement three Runge–Kutta formula pairs, and you must select one for the
integration. The best choice for METHOD depends on the problem. The order of accuracy is 3, 5 and 8
respectively. As a rule, the smaller TOL is, the larger you should take the value of METHOD. If the
components THRES are small enough that you are effectively specifying relative error control, experience
suggests

TOL efficient METHOD

10�2 � 10�4 1

10�3 � 10�6 2

10�5 � 3

The overlap in the ranges of tolerances appropriate for a given METHOD merely reflects the dependence
of efficiency on the problem being solved. Making TOL smaller will normally make the integration more
expensive. However, in the range of tolerances appropriate to a METHOD, the increase in cost is modest.
There are situations for which one METHOD, or even this kind of code, is a poor choice. You should not
specify a very small value for THRESðiÞ, when the ith solution component might vanish. In particular,
you should not do this when yi ¼ 0:0. If you do, the code will have to work hard with any value for
METHOD to compute significant digits, but METHOD ¼ 1 is a particularly poor choice in this situation.
All three methods are inefficient when the problem is ‘stiff’. If it is only mildly stiff, you can solve it with
acceptable efficiency with METHOD ¼ 1, but if it is moderately or very stiff, a code designed specifically
for such problems will be much more efficient. The higher the order, i.e., the larger the value of
METHOD, the more smoothness is required of the solution in order for the method to be efficient.

When assessment of the true (global) error is requested, this error assessment is updated at each step. Its
value can be obtained at any time by a call to D02PZF. The code monitors the computation of the global
error assessment and reports any doubts it has about the reliability of the results. The assessment scheme
requires some smoothness of f t; yð Þ, and it can be deceived if f is insufficiently smooth. At very crude
tolerances the numerical solution can become so inaccurate that it is impossible to continue assessing the
accuracy reliably. At very stringent tolerances the effects of finite precision arithmetic can make it
impossible to assess the accuracy reliably. The cost of this is roughly twice the cost of the integration
itself with METHOD ¼ 2 or 3, and three times with METHOD ¼ 1.

The first step of the integration is critical because it sets the scale of the problem. The integrator will find
a starting step size automatically if you set the parameter HSTART to 0:0. Automatic selection of the first
step is so effective that you should normally use it. Nevertheless, you might want to specify a trial value
for the first step to be certain that the code recognizes the scale on which phenomena occur near the initial
point. Also, automatic computation of the first step size involves some cost, so supplying a good value for
this step size will result in a less expensive start. If you are confident that you have a good value, provide
it via the parameter HSTART.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Parameters

1: NEQ – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved by the
integration routine.

Constraint: NEQ � 1.

D02PVF NAG Fortran Library Manual

D02PVF.2 [NP3657/21]

2: TSTART – double precision Input

On entry: the initial value of the independent variable, t0.

3: YSTARTðNEQÞ – double precision array Input

On entry: y0, the initial values of the solution, yi, for i ¼ 1; 2; . . . n, at t0.

4: TEND – double precision Input

On entry: the final value of the independent variable, tf , at which the solution is required. TSTART
and TEND together determine the direction of integration.

Constraint: TEND must be distinguishable from TSTART for the method and the precision of the
machine being used.

5: TOL – double precision Input

On entry: a relative error tolerance.

Constraint: 10:0�machine precision � TOL � 0:01.

6: THRESðNEQÞ – double precision array Input

On entry: a vector of thresholds.

Constraint: THRESðiÞ �
ffiffiffi

�
p

, where � is approximately the smallest possible machine number that
can be reciprocated without overflow (see X02AMF).

7: METHOD – INTEGER Input

On entry: the Runge–Kutta method to be used.

METHOD ¼ 1

A 2 3ð Þ pair is used.

METHOD ¼ 2

A 4 5ð Þ pair is used.

METHOD ¼ 3

A 7 8ð Þ pair is used.

Constraint: 1 � METHOD � 3.

8: TASK – CHARACTER*1 Input

On entry: determines whether the usual integration task is to be performed using D02PCF or a more
complicated task is to be performed using D02PDF.

TASK ¼ U

D02PCF is to be used for the integration.

TASK ¼ C

D02PDF is to be used for the integration.

Constraint: TASK ¼ U or C .

9: ERRASS – LOGICAL Input

On entry: specifies whether a global error assessment is to be computed with the main integration.
ERRASS ¼ :TRUE: specifies that it is.

10: HSTART – double precision Input

On entry: a value for the size of the first step in the integration to be attempted. The absolute value
of HSTART is used with the direction being determined by TSTART and TEND. The actual first

D02 – Ordinary Differential Equations D02PVF

[NP3657/21] D02PVF.3

step taken by the integrator may be different to HSTART if the underlying algorithm determines that
HSTART is unsuitable. If HSTART ¼ 0:0 then the size of the first step is computed automatically.

Suggested value: HSTART ¼ 0:0.

11: WORKðLENWRKÞ – double precision array Output

On exit: contains information for use by D02PCF or D02PDF. This must be the same array as
supplied to D02PCF or D02PDF. The contents of this array must remain unchanged between calls.

12: LENWRK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which D02PVF
is called. (LENWRK � 32� NEQ is always sufficient.)

Constraints:

if TASK ¼ U and ERRASS ¼ :FALSE:,
if METHOD ¼ 1, LENWRK � 10� NEQ;
if METHOD ¼ 2, LENWRK � 20� NEQ;
if METHOD ¼ 3, LENWRK � 16� NEQ;

if TASK ¼ U and ERRASS ¼ :TRUE:,
if METHOD ¼ 1, LENWRK � 17� NEQ;
if METHOD ¼ 2, LENWRK � 32� NEQ;
if METHOD ¼ 3, LENWRK � 21� NEQ;

if TASK ¼ C and ERRASS ¼ :FALSE:,
if METHOD ¼ 1, LENWRK � 10� NEQ;
if METHOD ¼ 2, LENWRK � 14� NEQ;
if METHOD ¼ 3, LENWRK � 16� NEQ;

if TASK ¼ C and ERRASS ¼ :TRUE:,
if METHOD ¼ 1, LENWRK � 15� NEQ;
if METHOD ¼ 2, LENWRK � 26� NEQ;
if METHOD ¼ 3, LENWRK � 21� NEQ..

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NEQ < 1,
or TEND is too close to TSTART,
or TOL > 0:01 or TOL < 10:0�machine precision,
or THRESðiÞ <

ffiffiffi

�
p

, where � is approximately the smallest possible machine number that
can be reciprocated without overflow (see X02AMF),

or METHOD 6¼ 1, 2 or 3,

D02PVF NAG Fortran Library Manual

D02PVF.4 [NP3657/21]

or TASK 6¼ U or C ,
or LENWRK is too small.

7 Accuracy

Not applicable.

8 Further Comments

If TASK ¼ C then the value of the parameter TEND may be reset during the integration without the
overhead associated with a complete restart; this can be achieved by a call to D02PWF.

It is often the case that a solution component yi is of no interest when it is smaller in magnitude than a
certain threshold. You can inform the code of this by setting THRESðiÞ to this threshold. In this way you
avoid the cost of computing significant digits in yi when only the fact that it is smaller than the threshold is
of interest. This matter is important when yi vanishes, and in particular, when the initial value YSTARTðiÞ
vanishes. An appropriate threshold depends on the general size of yi in the course of the integration.
Physical reasoning may help you select suitable threshold values. If you do not know what to expect of y,
you can find out by a preliminary integration using D02PCF with nominal values of THRES. As D02PCF
steps from t0 towards tf for each i ¼ 1; 2; . . . ; n it forms YMAX ið Þ, the largest magnitude of yi computed
at any step in the integration so far. Using this you can determine more appropriate values for THRES for
an accurate integration. You might, for example, take THRESðiÞ to be 10:0�machine precision times the
final value of YMAX ið Þ.

9 Example

See Section 9 of the documents for D02PCF, D02PDF, D02PXF, D02PWF and D02PZF.

D02 – Ordinary Differential Equations D02PVF

[NP3657/21] D02PVF.5 (last)

	D02PVF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	NEQ
	TSTART
	YSTART
	TEND
	TOL
	THRES
	METHOD
	TASK
	ERRASS
	HSTART
	WORK
	LENWRK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1

	7 Accuracy
	8 Further Comments
	9 Example

	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

